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Abstract
We study the derivative of the Legendre function of the first kind, Pν(z), with
respect to its degree ν. At first, we provide two contour integral representations
for ∂Pν(z)/∂ν. Then, we proceed to investigate the case of [∂Pν(z)/∂ν]ν=n,
with n being an integer; this case is met in some physical and engineering
problems. Since it holds that [∂Pν ′(z)/∂ν ′]ν ′=−ν−1 = −[∂Pν ′(z)/∂ν ′]ν ′=ν , we
focus on the sub-case of n being a non-negative integer. We show that

∂Pν(z)

∂ν

∣∣∣∣
ν=n

= Pn(z) ln
z + 1

2
+ Rn(z) (n ∈ N)

where Rn(z) is a polynomial in z of degree n. We present alternative
derivations of several known explicit expressions for Rn(z) and also add
some new. A generating function for Rn(z) is also constructed. Properties
of the polynomials Vn(z) = [Rn(z) + (−1)nRn(−z)]/2 and Wn−1(z) =
−[Rn(z)−(−1)nRn(−z)]/2 are also investigated. It is found that Wn−1(z) is the
Christoffel polynomial, well known from the theory of the Legendre function
of the second kind, Qn(z). As examples of applications of the results obtained,
we present non-standard derivations of some representations of Qn(z), sum to
closed forms some Legendre series, evaluate some definite integrals involving
Legendre polynomials and also derive an explicit representation of the indefinite
integral of the Legendre polynomial squared.

PACS numbers: 02.30.Gp, 02.30.Lt

1. Introduction

The importance of the Legendre functions for applied mathematics, for mathematical and
theoretical physics, and also for theoretical engineering, is comparable with that of the Bessel
functions. This explains why over the past two centuries the Legendre functions have been
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objects of extensive studies. Partial results of these investigations have been summarized in
handbooks of special functions [1–5] and in several monographs [6–17]. The research on
the Legendre functions is still going on, being motivated both by pure scientific interest as
well as by particular problems arising in applications of these functions in the aforementioned
disciplines.

The present paper is devoted to the study of the derivative of the Legendre function of the
first kind, Pν(z), with respect to its degree ν. Primarily, we shall be interested in the family
of functions [∂Pν(z)/∂ν]ν=n, n ∈ N, which are met in solving some boundary value problems
of potential theory [18], of heat conduction in solids [19] and of electromagnetism [20], in
the general theory of relativity [21, 22], in the theory of angular momentum eigenfunctions
for spin one-half particles [23] and also in the theory of Green’s functions for the spherical
Helmholtz operator [24]. The direct motivation to undertake the research reported in this paper
has come from our, somewhat surprising, finding that in the literature there seems to be no
work aimed at a comprehensive and systematic investigation of properties of [∂Pν(z)/∂ν]ν=n;
the present work purports to fill in this gap.

The structure of the paper is as follows. In section 2, we give a brief overview of results
obtained by other authors in their fragmentary investigations on [∂Pν(z)/∂ν]ν=n. Section 3
is devoted to recalling some basic facts from the theory of the Legendre function of the first
kind, to be used in later parts of the work. In section 4, we provide two contour integral
representations of ∂Pν(z)/∂ν; for completeness, a known series representation of ∂Pν(z)/∂ν

is also given there. In addition, some useful functional relations obeyed by this function are
listed. In section 5, we focus on [∂Pν(z)/∂ν]ν=n and prove that it may be written as

∂Pν(z)

∂ν

∣∣∣∣
ν=n

= Pn(z) ln
z + 1

2
+ Rn(z) (n ∈ N) (1.1)

where Pn(z) is the Legendre polynomial, while Rn(z) is a polynomial in z of degree n. The next
parts of section 5 are devoted to the study of properties of Rn(z). In particular, we construct
a generating function for Rn(z), rederive in alternative ways several known representations of
this polynomial and also add some new. Section 5 ends with a brief investigation of the related
polynomials Vn(z) = [Rn(z)+(−1)nRn(−z)]/2 and Wn−1(z) = −[Rn(z)−(−1)nRn(−z)]/2;
it is found that the latter are the Christoffel polynomials, well known from the theory of the
Legendre function of the second kind, Qn(z). The final section 6 shows some exemplary
applications of the results obtained in section 5. Specifically, we present non-standard
derivations of some properties of the Legendre function of the second kind, then sum to
closed forms some Legendre series and evaluate two definite integrals involving the Legendre
polynomials; also, we derive a formula for the indefinite integral of the Legendre polynomial
squared.

Throughout the whole paper, unless otherwise stated, it will be implicit that ν ∈ C, n ∈
N, z ∈ C and −1 � x � 1.

2. An overview of research done on [∂Pν(z)/∂ν]ν=n

The earliest investigations on [∂Pν(z)/∂ν]ν=n we have been able to trace were presented in
two, nowadays forgotten, papers by Bromwich [18] and Jolliffe [25], published in the second
decade of the 20th century. In the first of these works [18], concerning some particular
boundary value problems of potential theory, Bromwich obtained formula (1.1) and gave the
following two representations of the polynomial Rn(z):

Rn(z) =
n∑

k=1

1

k
[Pk(z) − Pk−1(z)]Pn−k(z) (2.1)
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Rn(z) = 2
n−1∑
k=0

(−1)n+k 2k + 1

(n − k)(n + k + 1)
[Pk(z) − Pn(z)]. (2.2)

In the short note [25], Jolliffe proved that [∂Pν(z)/∂ν]ν=n may be represented as
∂Pν(z)

∂ν

∣∣∣∣
ν=n

= 1

2n−1n!

dn

dzn

[
(z2 − 1)n ln

z + 1

2

]
− Pn(z) ln

z + 1

2
. (2.3)

A compact expression for [∂Pν(z)/∂ν]ν=n was provided by Hobson at the bottom of
p 172 in the classic monograph [11], but it appears to be incorrect.

Somewhat later, in the study [20] (cf also [26]) on the electromagnetic antenna theory,
Schelkunoff made an ingenious use of the Hille’s formula [15, p 68], linking Pν(z) and Pν(−z),
to obtain the result (1.1) with the polynomial Rn(z) expressed as1

Rn(z) = 2
n∑

k=1

(n + k)!

(k!)2(n − k)!
[ψ(n + k + 1) − ψ(n + 1)]

(
z − 1

2

)k

(2.4)

where

ψ(ζ ) = 1

�(ζ )

d�(ζ )

dζ
(2.5)

is the digamma function.
The more general problem of evaluating the derivative

[
∂P (µ)

ν (z)
/
∂ν

]
ν=n

, where P (µ)
ν (z)

is the associated Legendre function of the first kind, was investigated by Robin in [27] and in
[15, section 75]; however, his result looks fairly complicated.

The functions
[
∂P (m)

ν (z)/∂ν
]
ν=n

, with m ∈ N, were studied independently by Tsu [28]
and Carlson [29]. For m = 0, the finding of Carlson reduces to formula (1.1) with Rn(z) having
the same form as in the Schelkunoff’s expression (2.4). Tsu also arrived at equation (1.1),
but being unable to derive an explicit representation of Rn(z), instead he provided a recurrence
relation obeyed by these polynomials. With the aid of that recurrence, augmented by the initial
condition R0(z) = 0, in principle one may find any of the polynomials Rn(z).

Essentially, the same results as those of Tsu [28] were obtained for [∂Pν(z)/∂ν]ν=n by
Hoenselaers [21] and by the present author [23, appendix A].

The most recent investigation on [∂Pν(z)/∂ν]ν=n seems to be that of the present author
[24], who, being at that time unaware of the work of Bromwich [18], rederived his results
(1.1) and (2.2).

It is noteworthy that in many cases authors of the aforecited articles apparently were not
aware of results obtained by other researchers. The exceptions were Jolliffe [25] and Hobson
[11, section 112], who both cited the Bromwich’s paper [18], Robin [15, 27], who referred to
the paper of Schelkunoff [20], and Carlson [29], who mentioned the Schelkunoff’s work [20]
and also a relevant section in Robin’s monograph [15].

3. The Legendre function Pν(z)

It is well known [30, section 15.2] that the Legendre function of the first kind, Pν(z), may be
defined as the Schläfli contour integral:

Pν(z) = 1

2ν+1π i

∮
C(+)

dt
(t2 − 1)ν

(t − z)ν+1
. (3.1)

1 The reader should be warned that Schelkunoff [20] and Robin [14–16] defined the digamma function as

ψ(ζ ) = 1

�(ζ + 1)

d�(ζ + 1)

dζ

rather than as in our equation (2.5). For this reason, Schelkunoff’s result for Rn(z), quoted also by Robin in
[15, equation (331 ter)], seemingly differs from our equation (2.4).
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Figure 1. The complex t-plane and the integration contour C(+) for the definition (3.1) of the
Legendre function Pν(z). For the sake of applications presented in section 4.1, the cut joining the
points t = 1 and t = z (being two out of four branch points of the integrand in equation (3.1)) has
been chosen in the form (3.2).

If ν is not an integer, the integrand in equation (3.1) has four branch points, located at
t = ±1, t = z and |t | = ∞, and cuts in the complex t-plane are necessary to make the
integrand single valued (cf figure 1). Following the common convention [30, chapter 15], one
of these cuts will be chosen here as the semi-line along the real axis from t = −1 to t = −∞.
In view of later applications presented in section 4.1, we choose the second cut in the form of
the curve joining the points t = 1 and t = z, parametrized as

t = 1 + ηz

z + η
(1 � η < ∞). (3.2)

The integration contour C(+) is a closed curve enclosing the points t = 1 and t = z, such that it
does not cross either of the two cuts and is run counterclockwise. In addition, at the point on
the right of the point t = 1 (and on the right of z if z be real), where the contour C(+) crosses
the real axis, one sets arg(t ± 1) = 0 and |arg(t − z)| < π . The function Pν(z) defined by
equation (3.1) is single valued and analytic throughout the whole complex z-plane cut along
the real axis from z = −1 to z = −∞. If ν is an integer, the cuts both in the t-plane and
z-plane are unnecessary.

If |z−1| < 2, an alternative representation of Pν(z), in terms of the Gauss hypergeometric
series, is

Pν(z) = 2F1

(
−ν, ν + 1; 1; 1 − z

2

)
=

∞∑
k=0

(−ν)k(ν + 1)k

(k!)2

(
1 − z

2

)k

(|z − 1| < 2)

(3.3)

where

(ζ )k = �(ζ + k)

�(ζ )
(3.4)

is the Pochhammer symbol [4].
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If ν = n ∈ N, the function Pν(z) degenerates to the Legendre polynomial

Pn(z) = 1

2nn!

dn(z2 − 1)n

dzn
. (3.5)

The following well-known properties of the function Pν(z) may be derived from the
definition (3.1):

Pν(1) = 1 (3.6)

P−ν−1(z) = Pν(z) (3.7)[
d

dz
(1 − z2)

d

dz
+ ν(ν + 1)

]
Pν(z) = 0 (3.8)

(ν + 1)Pν+1(z) − (2ν + 1)zPν(z) + νPν−1(z) = 0 (3.9)

dPν+1(z)

dz
− z

dPν(z)

dz
= (ν + 1)Pν(z) (3.10)

z
dPν(z)

dz
− dPν−1(z)

dz
= νPν(z) (3.11)

dPν+1(z)

dz
− dPν−1(z)

dz
= (2ν + 1)Pν(z) (3.12)

(z + 1)
dPν(z)

dz
− (z + 1)

dPν−1(z)

dz
= νPν(z) + νPν−1(z) (3.13)

(z2 − 1)
dPν(z)

dz
= νzPν(z) − νPν−1(z). (3.14)

We shall make extensive use of these properties in the following sections.

4. Representations and some functional properties of ∂Pν(z)/∂ν

4.1. Contour integral representations of ∂Pν(z)/∂ν

If we differentiate equation (3.1) with respect to ν, after some simple manipulations we obtain
the first of two contour integral representations of the derivative ∂Pν(z)/∂ν given in this
section:

∂Pν(z)

∂ν
= 1

2ν+1π i

∮
C(+)

dt
(t2 − 1)ν

(t − z)ν+1
ln

t2 − 1

2(t − z)
. (4.1)

The cuts in the complex t-plane and the integration contour are identical as in the case of the
integral (3.1) defining the function Pν(z), and the principal branch of the logarithm is used.
It is seen from the above equation that the function ∂Pν(z)/∂ν is single valued and analytic
throughout the whole complex z-plane cut along the real axis from z = −1 to z = −∞.

Before proceeding further, let us consider the transformation

τ = 1 − zt

z − t
= −1 + (z + 1)

t − 1

t − z
. (4.2)

It maps, in a one-to-one way, the complex t-plane onto the complex τ -plane. In particular, the
points t = −1, +1, z and ∞ are mapped onto the points τ = +1,−1,∞ and z, respectively,
the cut t = −η (1 � η < ∞) is mapped onto the cut

τ = 1 + zη

z + η
(1 � η < ∞) (4.3)
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(cf equation (3.2)) and the cut (3.2) is mapped onto the cut

τ = −η (1 � η < ∞). (4.4)

Furthermore, the t-contour C(+) generates the τ -contour D(−), enclosing the points τ = 1 and
τ = z, run clockwise, and not crossing the cuts (4.3) and (4.4).

Now, to obtain the second contour integral representation of the derivative ∂Pν(z)/∂ν, we
rewrite equation (4.1) as

∂Pν(z)

∂ν
= I (1)

ν (z) + I (2)
ν (z) (4.5)

where

I (1)
ν (z) = 1

2ν+1π i

∮
C(+)

dt
(t2 − 1)ν

(t − z)ν+1 ln
t + 1

2
(4.6)

and

I (2)
ν (z) = 1

2ν+1π i

∮
C(+)

dt
(t2 − 1)ν

(t − z)ν+1 ln
t − 1

t − z
. (4.7)

Applying the variable transformation (4.2) to the integral (4.7) gives

I (2)
ν (z) = − 1

2ν+1π i

∮
D(−)

dτ
(τ 2 − 1)ν

(τ − z)ν+1
ln

τ + 1

z + 1
. (4.8)

It is evident that the contour D(−) in equation (4.8) may be deformed into the contour C(−),
which is a negatively oriented contour C(+), without changing the value of the integral. Then,
switching from C(−) to C(+), changing the name of the integration variable from τ to t and
inserting the result, together with equation (4.6), into equation (4.5) leads to the following
contour integral representation of ∂Pν(z)/∂ν:

∂Pν(z)

∂ν
= 1

2ν+1π i

∮
C(+)

dt
(t2 − 1)ν

(t − z)ν+1
ln

(t + 1)2

2(z + 1)
(4.9)

alternative to that in equation (4.1). Equation (4.9) may be rewritten in the form

∂Pν(z)

∂ν
= 1

2νπ i

∮
C(+)

dt
(t2 − 1)ν

(t − z)ν+1
ln

t + 1

2
− Pν(z) ln

z + 1

2
(4.10)

being the consequence of the definition (4.1).

4.2. A series representation of ∂Pν(z)/∂ν

Differentiating equation (3.3) with respect to ν, after exploiting the fact that
d(ζ )k

dζ
= (ζ )k[ψ(ζ + k) − ψ(ζ )] (4.11)

where ψ(ζ ) is the digamma function (2.5), we obtain ∂Pν(z)/∂ν in the form [24, 28]

∂Pν(z)

∂ν
=

∞∑
k=1

(−ν)k(ν + 1)k

(k!)2
[ψ(ν + k + 1) − ψ(ν + 1) + ψ(−ν) − ψ(−ν + k)]

(
1 − z

2

)k

(|z − 1| < 2). (4.12)

Since it is easily provable that

−ψ(ν + 1) + ψ(−ν) − ψ(−ν + k) = −ψ(ν − k + 1) (4.13)

equation (4.12) may be simplified, becoming [23, 24, 27]

∂Pν(z)

∂ν
=

∞∑
k=1

(−ν)k(ν + 1)k

(k!)2
[ψ(ν + k + 1) − ψ(ν − k + 1)]

(
1 − z

2

)k

(|z − 1| < 2). (4.14)
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4.3. Some functional properties of ∂Pν(z)/∂ν

Various functional relations obeyed by ∂Pν(z)/∂ν may be derived from the representations
(4.1) or (4.9). However, in many cases it will be much easier to obtain them by differentiating
the known relations obeyed by Pν(z). Proceeding in this way, from equations (3.6) to (3.8)
we deduce the property

∂Pν(1)

∂ν
= 0, (4.15)

the symmetry relation

∂Pν ′(z)

∂ν ′

∣∣∣∣
ν ′=−ν−1

= −∂Pν ′(z)

∂ν ′

∣∣∣∣
ν ′=ν

, (4.16)

and the differential relation[
d

dz
(1 − z2)

d

dz
+ ν(ν + 1)

]
∂Pν(z)

∂ν
= −(2ν + 1)Pν(z). (4.17)

Furthermore, from equations (3.9) to (3.14) we infer the inhomogeneous three-term recurrence
relation

(ν + 1)
∂Pν+1(z)

∂ν
− (2ν + 1)z

∂Pν(z)

∂ν
+ ν

∂Pν−1(z)

∂ν
= −Pν+1(z) + 2zPν(z) − Pν−1(z) (4.18)

which, again in virtue of equation (3.9), may also be rewritten as

(ν + 1)
∂Pν+1(z)

∂ν
− (2ν + 1)z

∂Pν(z)

∂ν
+ ν

∂Pν−1(z)

∂ν
= 1

2ν + 1
[Pν+1(z) − Pν−1(z)] (4.19)

and the following difference-differential relations:

d

dz

∂Pν+1(z)

∂ν
− z

d

dz

∂Pν(z)

∂ν
= (ν + 1)

∂Pν(z)

∂ν
+ Pν(z) (4.20)

z
d

dz

∂Pν(z)

∂ν
− d

dz

∂Pν−1(z)

∂ν
= ν

∂Pν(z)

∂ν
+ Pν(z) (4.21)

d

dz

∂Pν+1(z)

∂ν
− d

dz

∂Pν−1(z)

∂ν
= (2ν + 1)

∂Pν(z)

∂ν
+ 2Pν(z) (4.22)

(z + 1)
d

dz

∂Pν(z)

∂ν
− (z + 1)

d

dz

∂Pν−1(z)

∂ν
= ν

∂Pν(z)

∂ν
+ ν

∂Pν−1(z)

∂ν
+ Pν(z) + Pν−1(z) (4.23)

(z2 − 1)
d

dz

∂Pν(z)

∂ν
= νz

∂Pν(z)

∂ν
− ν

∂Pν−1(z)

∂ν
+ zPν(z) − Pν−1(z). (4.24)

We shall refer to the relations (4.15)–(4.24) in later sections.

5. Formulae for [∂Pν(z)/∂ν]ν=n and some related problems

We have already mentioned in the introduction that analysing mathematically some physical
problems one encounters the derivative ∂Pν(z)/∂ν evaluated at integer values of ν, i.e.,
[∂Pν(z)/∂ν]ν=n or [∂Pν(z)/∂ν]ν=−n−1. Below, we shall study this particular case. Since, in
virtue of the property (4.16), it holds that

∂Pν(z)

∂ν

∣∣∣∣
ν=−n−1

= −∂Pν(z)

∂ν

∣∣∣∣
ν=n

(5.1)

we shall be concerned with [∂Pν(z)/∂ν]ν=n only.
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5.1. The Jolliffe’s formula (2.3)

We begin with the observation that, because of equation (4.10), the derivative [∂Pν(z)/∂ν]ν=n

may be rewritten as

∂Pν(z)

∂ν

∣∣∣∣
ν=n

= 1

2nπ i

∮
C(+)

dt
(t2 − 1)n

(t − z)n+1
ln

t + 1

2
− Pn(z) ln

z + 1

2
. (5.2)

In this equation, the only singularity of the integrand within the region enclosed by the contour
C(+) is the pole at t = z of order n + 1. Hence, the integral may be immediately evaluated by
the method of residues. This gives

∂Pν(z)

∂ν

∣∣∣∣
ν=n

= 1

2n−1n!

dn

dzn

[
(z2 − 1)n ln

z + 1

2

]
− Pn(z) ln

z + 1

2
(5.3)

which is the Jolliffe’s formula (2.3). It is worthwhile to mention that the validity of this
formula was proved by Jolliffe in [25] in an entirely different way, without resorting to the
complex variable techniques.

5.2. Polynomials Rn(z)

5.2.1. General considerations. For reasons which will become clear shortly, it is convenient
to write [∂Pν(z)/∂ν]ν=n in the form

∂Pν(z)

∂ν

∣∣∣∣
ν=n

= Pn(z) ln
z + 1

2
+ Rn(z). (5.4)

According to equations (4.9) and (3.1), the function Rn(z) may be represented as the contour
integral

Rn(z) = 1

2nπ i

∮
C(+)

dt
(t2 − 1)n

(t − z)n+1
ln

t + 1

z + 1
. (5.5)

Since the only singularity of the integrand within the domain enclosed by C(+) is the pole at
t = z of order n + 1, on applying the residue theorem we have

Rn(z) = 1

2n−1n!

dn

dtn

[
(t2 − 1)n ln

t + 1

z + 1

]
t=z

. (5.6)

Carrying out the n-fold differentiation with the aid of the Leibniz identity transforms
equation (5.6) into

Rn(z) = 1

2n−1n!

n∑
k=1

(−1)k+1(k − 1)!

(
n

k

)
1

(z + 1)k

dn−k(z2 − 1)n

dzn−k
. (5.7)

(Observe that we might arrive at the above result manipulating with the Jolliffe’s formula (5.3)
with the aid of the Leibniz identity and the Rodrigues formula (3.5), rather than evaluating the
contour integral (5.5).) In equation (5.7), and hereafter, we adopt the convention that if the
upper limit of the sum is less by unity than the lower one, then the sum vanishes identically.
The derivative in the summand appears to be identical with that met in the Rodrigues formula
for the Gegenbauer polynomial

C
(k+1/2)

n−k (z) = k!(n + k)!

2n−kn!(2k)!(n − k)!

1

(z2 − 1)k

dn−k(z2 − 1)n

dzn−k
= 2kk!

(2k)!

dkPn(z)

dzk
(5.8)

so that equation (5.7) may be rewritten as

Rn(z) = −n!
n∑

k=1

(2k)!

2k−1kk!(n + k)!
(1 − z)kC

(k+1/2)

n−k (z). (5.9)



Derivative of the Legendre function 15155

Table 1. The polynomials Rn(z) with 0 � n � 6.

n Rn(z)

0 0

1 z − 1

2 7
4 z2 − 3

2 z − 1
4

3 37
12 z3 − 5

2 z2 − 5
4 z + 2

3

4 533
96 z4 − 35

8 z3 − 59
16 z2 + 55

24 z + 7
32

5 1627
160 z5 − 63

8 z4 − 449
48 z3 + 49

8 z2 + 47
32 z − 8

15

6 18107
960 z6 − 231

16 z5 − 1417
64 z4 + 119

8 z3 + 379
64 z2 − 231

80 z − 37
192

It is seen from equation (5.9) that the function Rn(z) is a polynomial in z of degree n, possessing
the property2

Rn(1) = 0. (5.10)

The polynomials Rn(z) with 0 � n � 6 are shown explicitly in table 1.
In later sections, we shall derive several expressions for the polynomials Rn(z), alternative

to that in equation (5.9). However, before it is done, we have to know some functional
properties of these polynomials. These are briefly discussed in the following section.

5.2.2. Some functional properties of the polynomials Rn(z). If we particularize
equation (4.17) to the case ν = n and substitute therein the representation (5.4), after exploiting
the Legendre identity (3.8) we find[

d

dz
(1 − z2)

d

dz
+ n(n + 1)

]
Rn(z) = 2(z − 1)

dPn(z)

dz
− 2nPn(z). (5.11)

With the aid of the recurrence relation (3.11), equation (5.11) may be transformed into[
d

dz
(1 − z2)

d

dz
+ n(n + 1)

]
Rn(z) = 2

dPn−1(z)

dz
− 2

dPn(z)

dz
. (5.12)

However, it is known [5, equation (8.915.2)] that the Legendre polynomials obey

dPn(z)

dz
=

int[(n−1)/2]∑
k=0

(2n − 4k − 1)Pn−2k−1(z). (5.13)

Hence, it may be easily deduced that

dPn−1(z)

dz
− dPn(z)

dz
=

n−1∑
k=0

(−1)n+k(2k + 1)Pk(z) (5.14)

2 It seems worthwhile to add that if we introduce the functions R−n−1(z), defined through

∂Pν(z)

∂ν

∣∣∣∣
ν=−n−1

= P−n−1(z) ln
z + 1

2
+ R−n−1(z)

these are not polynomials in z. It follows from the above definition and from equations (5.1), (5.4) and (3.7) that

R−n−1(z) = −2Pn(z) ln
z + 1

2
− Rn(z).

This observation will be of value in the context of equations (5.19)–(5.21).
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and insertion of this result into equation (5.12) gives[
d

dz
(1 − z2)

d

dz
+ n(n + 1)

]
Rn(z) = 2

n−1∑
k=0

(−1)n+k(2k + 1)Pk(z). (5.15)

Similarly, if the representation (5.4) is plugged into the recurrence relations (4.18)–(4.24),
one obtains the following three-term recurrence relation obeyed by the polynomials Rn(z):

(n + 1)Rn+1(z) − (2n + 1)zRn(z) + nRn−1(z) = −Pn+1(z) + 2zPn(z) − Pn−1(z) (5.16)

or equivalently

(n + 1)Rn+1(z) − (2n + 1)zRn(z) + nRn−1(z) = 1

2n + 1
[Pn+1(z) − Pn−1(z)] (5.17)

and further

(z + 1)
dRn+1(z)

dz
− z(z + 1)

dRn(z)

dz
= (n + 1)(z + 1)Rn(z) − Pn+1(z) + (2z + 1)Pn(z) (5.18)

z(z + 1)
dRn(z)

dz
− (z + 1)

dRn−1(z)

dz
= n(z + 1)Rn(z) + Pn(z) + Pn−1(z) (5.19)

(z + 1)
dRn+1(z)

dz
− (z + 1)

dRn−1(z)

dz
= (2n + 1)(z + 1)Rn(z)

−Pn+1(z) + 2(z + 1)Pn(z) + Pn−1(z) (5.20)

(z + 1)
dRn(z)

dz
− (z + 1)

dRn−1(z)

dz
= nRn(z) + nRn−1(z) + 2Pn−1(z) (5.21)

(z2 − 1)
dRn(z)

dz
= nzRn(z) − nRn−1(z) + Pn(z) − Pn−1(z). (5.22)

If n = 0, in equations (5.19)–(5.21) one should set

dR−1(z)

dz
= − 2

z + 1
(5.23)

in accordance with what has been said in footnote 2.

5.2.3. A generating function for Rn(z). In this section, we shall attempt to sum to the closed
form the series

F(h; z) =
∞∑

n=0

hnRn(z). (5.24)

If the domain of convergence of the series includes some neighbourhood of the point h = 0,
the function F(h; z) may be used to generate the polynomials Rn(z), since then it holds that

Rn(z) = 1

n!

∂nF (h; z)

∂hn

∣∣∣∣
h=0

. (5.25)

To find the function F(h; z), we shall assume temporarily that |h| � 1 (later, once the
function F(h; z) is found, we shall establish the actual radius of convergence of the expansion
(5.24) by referring to facts known from the complex analysis). We begin with the observation
that the value of the integral on the right-hand side of equation (5.5) is not changed if the
contour C(+) is deformed into the small circumference

|t − z| = |h(z2 − 1)| (5.26)
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oriented in the positive sense and denoted hereafter as C(+)
h . Substituting Rn(z) in the form

(5.5), but with C(+) replaced by C(+)
h , into the expansion (5.24), and interchanging subsequently

the orders of summation and integration, yields

F(h; z) = 1

π i

∮
C(+)

h

dt

[ ∞∑
n=0

(
h

2

t2 − 1

t − z

)n
]

1

t − z
ln

t + 1

z + 1
. (5.27)

On the contour (5.26) it holds that∣∣∣∣h2 t2 − 1

t − z

∣∣∣∣ = 1

2
+ O(h) < 1 (5.28)

so that the series under the integral converges and may be summed to the closed form
∞∑

n=0

(
h

2

t2 − 1

t − z

)n

= 1

1 − h

2

t2 − 1

t − z

= −2
t − z

h(t − t+)(t − t−)
(5.29)

with

t± = 1 ± √
h2 − 2hz + 1

h
= 2z − h

1 ∓ √
h2 − 2hz + 1

(5.30)

where we choose this branch of the square root for which

lim
h→0

√
h2 − 2hz + 1 = +1. (5.31)

Hence, after combining equations (5.27) and (5.29), we arrive at

F(h; z) = 2i

πh

∮
C(+)

h

dt
1

(t − t+)(t − t−)
ln

t + 1

z + 1
. (5.32)

The integrand in equation (5.32) has two simple poles at t = t± (and two branch points located
at t = −1 and |t | = ∞). Since it follows from equation (5.30) that

t+ = 2h−1 − z + O(h) (|h| � 1) (5.33)

and

t− = z + 1
2h(z2 − 1) + O(h2) (|h| � 1) (5.34)

it appears that only t− lies in the domain enclosed by the contour (5.26). Hence, evaluating
the integral by residues, we obtain

F(h; z) = 4

h

1

t+ − t−
ln

t− + 1

z + 1
(5.35)

or equivalently, after exploiting equation (5.30),

F(h; z) = 2
1√

h2 − 2hz + 1
ln

h + 1 − √
h2 − 2hz + 1

h(z + 1)
. (5.36)

It remains to establish the radius of convergence of the expansion obtained by merging
equations (5.24) and (5.36). The singularities of the function (5.36), considered as a function of
the variable h, are two branch points associated with the square root and located at z±√

z2 − 1.
Hence, on the ground of the well-known theorem [30, section 5.4] concerning the Taylor
expansion in the complex domain, we state that the expansion converges in the circle

|h| < min
∣∣z ±

√
z2 − 1

∣∣. (5.37)
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Thus, in summary, we have derived the formula

2
1√

h2 − 2hz + 1
ln

h + 1 − √
h2 − 2hz + 1

h(z + 1)
=

∞∑
n=0

hnRn(z)
(|h| < min

∣∣z ±
√

z2 − 1
∣∣).

(5.38)

If we replace in equation (5.38) h by h−1, in virtue of the fact that

1

z ± √
z2 − 1

= z ∓
√

z2 − 1 (5.39)

we infer the expansion

2
1√

h2 − 2hz + 1
ln

h + 1 − √
h2 − 2hz + 1

z + 1
=

∞∑
n=0

h−n−1Rn(z)
(|h| > max

∣∣z ±
√

z2 − 1
∣∣)

(5.40)

which also may be deduced from the findings of Bromwich [18].

5.2.4. The Bromwich’s formula (2.1). Let us define

G(h; z) = ln
h + 1 − √

h2 − 2hz + 1

h(z + 1)
. (5.41)

To find the power series representation of G(h; z) with respect to h, we observe that
differentiating the defining equation (5.41) with respect to z gives

∂G(h; z)

∂z
= 1

2(z + 1)

(
h + 1√

h2 − 2hz + 1
− 1

)
. (5.42)

With the aid of the Legendre expansion

1√
h2 − 2hz + 1

=
∞∑

n=0

hnPn(z)
(|h| < min

∣∣z ±
√

z2 − 1
∣∣), (5.43)

equation (5.42) may be rewritten as

∂G(h; z)

∂z
= 1

2(z + 1)

∞∑
n=1

hn[Pn(z) + Pn−1(z)]
(|h| < min

∣∣z ±
√

z2 − 1
∣∣). (5.44)

However, from equation (3.13) it may be inferred that the Legendre polynomials obey

Pn(z) + Pn−1(z)

z + 1
= 1

n

[
dPn(z)

dz
− dPn−1(z)

dz

]
(n �= 0) (5.45)

and consequently equation (5.44) may be cast into the form

∂G(h; z)

∂z
= 1

2

∞∑
n=1

hn

n

[
dPn(z)

dz
− dPn−1(z)

dz

] (|h| < min
∣∣z ±

√
z2 − 1

∣∣). (5.46)

Integration of equation (5.46) with respect to z gives

G(h; z) = 1

2

∞∑
n=1

hn

n
[Pn(z) − Pn−1(z)] + g(h)

(|h| < min
∣∣z ±

√
z2 − 1

∣∣) (5.47)

where g(h) remains to be determined. Since the Legendre polynomials, being particular cases
of the Legendre functions, possess the property (3.6), from equation (5.47) we infer that

g(h) = G(h; 1). (5.48)
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If we couple this with equation (5.41) and recall that in our considerations we use this branch
of the square root which obeys the limiting relation (5.31), we find

g(h) = ln
h + 1 − (1 − h)

2h
≡ 0. (5.49)

Hence, equations (5.41), (5.47) and (5.49) lead us to the expansion

ln
h + 1 − √

h2 − 2hz + 1

h(z + 1)
= 1

2

∞∑
n=1

hn

n
[Pn(z) − Pn−1(z)]

(|h| < min
∣∣z ±

√
z2 − 1

∣∣).
(5.50)

If equations (5.36), (5.43) and (5.50) are combined, this yields the representation of the
generating function F(h; z) in the form of the product of two power series:

F(h; z) =
[ ∞∑

n=0

hnPn(z)

]{ ∞∑
n=1

hn

n
[Pn(z) − Pn−1(z)]

} (|h| < min
∣∣z ±

√
z2 − 1

∣∣).
(5.51)

Multiplying these two series gives

F(h; z) =
∞∑

n=0

hn

{
n∑

k=1

1

k
[Pk(z) − Pk−1(z)]Pn−k(z)

} (|h| < min
∣∣z ±

√
z2 − 1

∣∣)
(5.52)

and combining this result with equation (5.24) furnishes

Rn(z) =
n∑

k=1

1

k
[Pk(z) − Pk−1(z)]Pn−k(z), (5.53)

i.e., Bromwich’s formula (2.1).

5.2.5. The Bromwich’s formula (2.2). We have already proved that Rn(z) is the polynomial
in z of degree n. Hence, it must be possible to represent it as a linear combination of the
Legendre polynomials in z, of degrees not exceeding n:

Rn(z) =
n∑

k=0

cnkPk(z). (5.54)

To find the combination coefficients cnk , we plug the expansion (5.54) into the differential
identity (5.15) and simplify the result with the aid of the Legendre formula (3.8). Equating
coefficients at Pk(z) on both sides of the resulting relation furnishes the coefficients cnk , with
0 � k � n − 1, in the form

cnk = (−1)n+k 2(2k + 1)

(n − k)(n + k + 1)
(0 � k � n − 1). (5.55)

To determine the coefficient cnn, we exploit the fact that the polynomials Rn(z) have been
shown (cf equation (5.10)) to vanish at z = 1. In virtue of the property (3.6), we thus have the
sum rule

n∑
k=0

cnk = 0 (5.56)
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from which, after utilizing the result (5.55), it follows that

cnn = 2
n−1∑
k=0

(−1)n+k+1 2k + 1

(n − k)(n + k + 1)
. (5.57)

Equations (5.54), (5.55) and (5.57) lead to the following representation of the polynomial
Rn(z):

Rn(z) = 2
n−1∑
k=0

(−1)n+k 2k + 1

(n − k)(n + k + 1)
[Pk(z) − Pn(z)] (5.58)

which is Bromwich’s formula (2.2).
Before concluding this section, we remark that with no difficulty it may be proved that

the coefficient cnn may be expressed not only as in equation (5.57), but also in several other
equivalent forms, for instance as

cnn =
n−1∑
k=0

1

(k + 1)(2k + 1)
(5.59)

cnn = 2
2n∑

k=1

(−1)k+1 1

k
(5.60)

or

cnn = 2
2n∑

k=n+1

1

k
. (5.61)

From the last of the above equations and from the following well-known property of the
digamma function [4]

ψ(n + 1) = −γ +
n∑

k=1

1

k
(5.62)

where γ is the Euler–Mascheroni constant, it follows that

cnn = 2[ψ(2n + 1) − ψ(n + 1)] (5.63)

so that equation (5.58) may be also rewritten as

Rn(z) = 2[ψ(2n + 1) − ψ(n + 1)]Pn(z) + 2
n−1∑
k=0

(−1)n+k 2k + 1

(n − k)(n + k + 1)
Pk(z). (5.64)

We shall make use of equation (5.64) in sections 5.3.1 and 6.2.

5.2.6. The Schelkunoff’s formula (2.4). Next, let us seek the polynomial Rn(z) in the form

Rn(z) =
n∑

k=0

a
(−)
nk (z − 1)k. (5.65)

By virtue of the property (5.10) it is immediately seen that it must hold that

a
(−)
n0 = 0. (5.66)
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To find the coefficients a
(−)
nk with 1 � k � n, we shall exploit the differential identity (5.12)

obeyed by Rn(z). If use is made of the first Murphy’s formula [11, section 15]

Pn(z) =
n∑

k=0

(n + k)!

(k!)2(n − k)!

(
z − 1

2

)k

, (5.67)

one finds that

dPn−1(z)

dz
− dPn(z)

dz
= −

n−1∑
k=0

(n + k)!

(k!)2(n − k − 1)!

(
z − 1

2

)k

(5.68)

so that equation (5.12) becomes[
d

dz
(1 − z2)

d

dz
+ n(n + 1)

]
Rn(z) = −

n−1∑
k=0

(n + k)!

2k−1(k!)2(n − k − 1)!
(z − 1)k. (5.69)

Substituting here the expansion (5.65) and equating coefficients at (z − 1)k on both sides of
the resulting equation, one arrives at the inhomogeneous two-term difference relation

2(k + 1)2a
(−)
n,k+1 − (n − k)(n + k + 1)a

(−)
nk = (n + k)!

2k−1(k!)2(n − k − 1)!
(0 � k � n − 1).

(5.70)

The structure of the inhomogeneity suggests to seek a
(−)
nk in the form

a
(−)
nk = (n + k)!

2k−1(k!)2(n − k)!
b

(−)
nk (5.71)

with b
(−)
nk to be determined. Plugging equation (5.71) into (5.70) yields the following simple

recurrence relation for the coefficients b
(−)
nk :

b
(−)
n,k+1 − b

(−)
nk = 1

n + k + 1
(0 � k � n − 1) (5.72)

which is to be solved subject to the initial condition

b
(−)
n0 = 0 (5.73)

implied by equations (5.71) and (5.66). The solution is straightforwardly found to be

b
(−)
nk =

k∑
m=1

1

n + m
= ψ(n + k + 1) − ψ(n + 1). (5.74)

On combining equations (5.65), (5.71) and (5.74), one arrives at the Schelkunoff’s formula

Rn(z) = 2
n∑

k=1

(n + k)!

(k!)2(n − k)!
[ψ(n + k + 1) − ψ(n + 1)]

(
z − 1

2

)k

(5.75)

(cf equation (2.4) and the footnote thereto).

5.2.7. An analogue of the Schelkunoff’s formula (2.4). Having found in the preceding section
the expansion of Rn(z) in powers of z−1, it is then natural to consider an analogous expansion
in powers of z + 1:

Rn(z) =
n∑

k=0

a
(+)
nk (z + 1)k. (5.76)
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To find the coefficients a
(+)
nk , we shall proceed as in the preceding section, but this time starting

with the second of Murphy’s formulae [11, section 15]:

Pn(z) =
n∑

k=0

(−1)n+k (n + k)!

(k!)2(n − k)!

(
z + 1

2

)k

(5.77)

from which it follows that

dPn−1(z)

dz
− dPn(z)

dz
=

n−1∑
k=0

(−1)n+k n(n + k)!

k!(k + 1)!(n − k − 1)!

(
z + 1

2

)k

. (5.78)

Combining this result with equation (5.12) casts the latter into the form[
d

dz
(1 − z2)

d

dz
+ n(n + 1)

]
Rn(z) =

n−1∑
k=0

(−1)n+k n(n + k)!

2k−1k!(k + 1)!(n − k − 1)!
(z + 1)k.

(5.79)

Plugging here the expansion (5.76) and equating then coefficients at (z + 1)k on both sides of
the resulting equation leads to the two-term recurrence

2(k + 1)2a
(+)
n,k+1 + (n − k)(n + k + 1)a

(+)
nk = (−1)n+k n(n + k)!

2k−1k!(k + 1)!(n − k − 1)!
(0 � k � n − 1). (5.80)

Guided by the form of the inhomogeneity, we substitute

a
(+)
nk = (−1)n+k+1 (n + k)!

2k−1(k!)2(n − k)!
b

(+)
nk (5.81)

which results in the much simpler recurrence

b
(+)
n,k+1 − b

(+)
nk = 1

k + 1
− 1

n + k + 1
(0 � k � n − 1). (5.82)

The solution to equation (5.82), expressed in terms of the still unknown coefficient b
(+)
n0 , is

easily found to be

b
(+)
nk = b

(+)
n0 + ψ(k + 1) − ψ(1) + ψ(n + 1) − ψ(n + k + 1). (5.83)

If, for brevity, we define

b̄
(+)
n0 = b

(+)
n0 − ψ(1) + ψ(n + 1) (5.84)

equation (5.83) becomes

b
(+)
nk = b̄

(+)
n0 + ψ(k + 1) − ψ(n + k + 1). (5.85)

To determine b̄
(+)
n0 , and subsequently b

(+)
nk and a

(+)
nk , first we observe that it follows from

equations (5.54), (5.76) and (5.77) that the coefficients a(+)
nn and cnn are related through

a(+)
nn = (2n)!

2n(n!)2
cnn. (5.86)

Particularizing then equations (5.81) and (5.85) to the case k = n and merging with
equation (5.86) results in the relationship

−2
[
b̄

(+)
n0 + ψ(n + 1) − ψ(2n + 1)

] = cnn. (5.87)

Solving this for b̄
(+)
n0 and using cnn in the form (5.63) gives

b̄
(+)
n0 = 0. (5.88)
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Inserting this into equation (5.85) we have

b
(+)
nk = ψ(k + 1) − ψ(n + k + 1) (5.89)

and combining this result with equations (5.81) and (5.76) we eventually arrive at the sought
expansion of Rn(z) in powers of z + 1:

Rn(z) = 2
n∑

k=0

(−1)n+k (n + k)!

(k!)2(n − k)!
[ψ(n + k + 1) − ψ(k + 1)]

(
z + 1

2

)k

. (5.90)

5.3. Polynomials Vn(z) and Wn−1(z)

In this section, we shall make a brief study of the properties of the polynomials Vn(z) and
Wn−1(z), defined in terms of Rn(z) as

Vn(z) = 1
2 [Rn(z) + (−1)nRn(−z)] (5.91)

and3

Wn−1(z) = − 1
2 [Rn(z) − (−1)nRn(−z)] (5.92)

respectively, so that it holds that

Rn(z) = Vn(z) − Wn−1(z). (5.93)

It is evident from the definitions (5.91) and (5.92) that degrees of the polynomials Vn(z) and
Wn−1(z) are equal to n and n − 1, respectively.

While we are not aware of any investigation on the polynomials Vn(z), we shall show
below that the polynomials Wn−1(z) are essentially the Christoffel polynomials, well known
from the theory of the Legendre functions of the second kind [11, section 34].

5.3.1. Some functional properties of the polynomials Vn(z). It is an immediate consequence
of the definition (5.91) that the polynomials Vn(z) possess the property

Vn(−z) = (−1)nVn(z), (5.94)

i.e., the parity of the polynomial Vn(z) is the same as that of the Legendre polynomial Pn(z).
Further, combining equation (5.91) with the Bromwich formulae (2.1) and (2.2), with the
Schelkunoff formula (2.4) and with the analogue (5.90) of the latter, we find the following
respective representations of the polynomials Vn(z):

Vn(z) =
n∑

k=1

1

k
Pk(z)Pn−k(z) (5.95)

Vn(z) = 2[ψ(2n + 1) − ψ(n + 1)]Pn(z) + 2
n−2∑
k=0

1 + (−1)n+k

2

2k + 1

(n − k)(n + k + 1)
Pk(z)

(5.96)

or, equivalently,

Vn(z) = 2[ψ(2n + 1) − ψ(n + 1)]Pn(z) +
int[(n−2)/2]∑

k=0

2n − 4k − 3

(k + 1)(2n − 2k − 1)
Pn−2k−2(z)

(5.97)
3 The polynomials Wn(z) from [23, 24] are identical with the polynomials Rn(z) from the present paper and should
not be confused with the Christoffel polynomials defined in equation (5.92).
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Table 2. The polynomials Vn(z) with 0 � n � 6.

n Vn(z)

0 0

1 z

2 7
4 z2 − 1

4

3 37
12 z3 − 5

4 z

4 533
96 z4 − 59

16 z2 + 7
32

5 1627
160 z5 − 449

48 z3 + 47
32 z

6 18107
960 z6 − 1417

64 z4 + 379
64 z2 − 37

192

Vn(z) =
n∑

k=0

(n + k)!

(k!)2(n − k)!
[2ψ(n + k + 1) − ψ(n + 1) − ψ(k + 1)]

(
z − 1

2

)k

(5.98)

and

Vn(z) =
n∑

k=0

(−1)n+k (n + k)!

(k!)2(n − k)!
[2ψ(n + k + 1) − ψ(n + 1) − ψ(k + 1)]

(
z + 1

2

)k

.

(5.99)

The polynomials Vn(z) with 0 � n � 6 are explicitly shown in table 2.
Further properties of the polynomials Vn(z) follow from coupling equation (5.91) with

formulae (5.12) and (5.16)–(5.22), occasionally with the help of some of the relations (3.9)–
(3.14) and of equation (5.45). In this way, we obtain the differential identity[

d

dz
(1 − z2)

d

dz
+ n(n + 1)

]
Vn(z) = 2

dPn−1(z)

dz
, (5.100)

the inhomogeneous three-term recurrence relation

(n + 1)Vn+1(z) − (2n + 1)zVn(z) + nVn−1(z) = −Pn+1(z) + 2zPn(z) − Pn−1(z) + δn0,

(5.101)

or, equivalently,

(n + 1)Vn+1(z) − (2n + 1)zVn(z) + nVn−1(z) = 1

2n + 1
[Pn+1(z) − Pn−1(z)] + δn0, (5.102)

and the differential-difference relations

(n + 1)
dVn+1(z)

dz
− (n + 1)z

dVn(z)

dz
= (n + 1)2Vn(z) + Pn(z) − dPn−1(z)

dz
(5.103)

nz
dVn(z)

dz
− n

dVn−1(z)

dz
= n2Vn(z) − dPn−1(z)

dz
(5.104)

n(n + 1)
dVn+1(z)

dz
− n(n + 1)

dVn−1(z)

dz
= n(n + 1)(2n + 1)Vn(z) + nPn(z)

− (2n + 1)
dPn−1(z)

dz
(5.105)

(z2 − 1)
dVn(z)

dz
= nzVn(z) − nVn−1(z) − Pn−1(z) + δn0. (5.106)
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The origin of the term δn0 in equations (5.101), (5.102) and (5.106), and also in some other
formulae in this and in the following section, is due to the fact that P−1(z) ≡ P0(z) is an even
function of z.

Still another useful relationship, which will find an application in section 6.3, may be
derived from the recurrences (5.101) and (3.9), with the latter specialized to the case ν = n.
Multiplying the former recurrence by Pn(z) and the latter by Vn(z), subtracting and exploiting
the fact that

Pn(z)δn0 = δn0 (5.107)

we find

(n + 1)[Pn(z)Vn+1(z) − Vn(z)Pn+1(z)] − n[Pn−1(z)Vn(z) − Vn−1(z)Pn(z)]

= −Pn(z)Pn+1(z) + 2z[Pn(z)]
2 − Pn−1(z)Pn(z) + δn0. (5.108)

Replacing in equation (5.108) n with k and summing over k from k = 0 to k = n yields

(n + 1)[Pn(z)Vn+1(z) − Vn(z)Pn+1(z)] = Pn(z)Pn+1(z) + 2
n∑

k=0

Pk(z)[zPk(z) − Pk+1(z)].

(5.109)

Since it holds that

zP0(z) = P1(z) (5.110)

the term with k = 0 in the sum on the right-hand side of equation (5.109) may be dropped and
this results in the sought relationship

(n + 1)[Pn(z)Vn+1(z) − Vn(z)Pn+1(z)] = Pn(z)Pn+1(z) + 2
n∑

k=1

Pk(z)[zPk(z) − Pk+1(z)].

(5.111)

We conclude this section observing that from equations (5.91), (5.38) and (5.40) the
following expansions may be inferred:

− 1√
h2 − 2hz + 1

ln
1 − hz +

√
h2 − 2hz + 1

2
=

∞∑
n=0

hnVn(z)

(|h| < min
∣∣z ±

√
z2 − 1

∣∣) (5.112)

− 1√
h2 − 2hz + 1

ln
h − z +

√
h2 − 2hz + 1

2h
=

∞∑
n=0

h−n−1Vn(z)

(|h| > max
∣∣z ±

√
z2 − 1

∣∣). (5.113)

5.3.2. Some functional properties of the polynomials Wn−1(z). It is seen from equations
(5.92) and (5.91) that the parity of the polynomial Wn−1(z) is opposite to that of the polynomial
Vn(z) (hence, also to that of the Legendre polynomial Pn(z)):

Wn−1(−z) = (−1)n+1Wn−1(z). (5.114)
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Table 3. The polynomials Wn−1(z) with −1 � n − 1 � 5.

n − 1 Wn−1(z)

−1 0
0 1

1 3
2 z

2 5
2 z2 − 2

3

3 35
8 z3 − 55

24 z

4 63
8 z4 − 49

8 z2 + 8
15

5 231
16 z5 − 119

8 z3 + 231
80 z

Equations (5.92), (2.1), (2.2), (2.4) and (5.90) imply the following representations of the
polynomials Wn−1(z):

Wn−1(z) =
n∑

k=1

1

k
Pk−1(z)Pn−k(z) (5.115)

Wn−1(z) = 2
n−1∑
k=0

1 − (−1)n+k

2

2k + 1

(n − k)(n + k + 1)
Pk(z) (5.116)

Wn−1(z) =
int[(n−1)/2]∑

k=0

2n − 4k − 1

(2k + 1)(n − k)
Pn−2k−1(z) (5.117)

Wn−1(z) =
n−1∑
k=0

(n + k)!

(k!)2(n − k)!
[ψ(n + 1) − ψ(k + 1)]

(
z − 1

2

)k

(5.118)

and

Wn−1(z) =
n−1∑
k=0

(−1)n+k+1 (n + k)!

(k!)2(n − k)!
[ψ(n + 1) − ψ(k + 1)]

(
z + 1

2

)k

. (5.119)

The polynomials Wn−1(z) with 0 � n � 6 are listed in table 3.
A glance at either of equations (5.115)–(5.119) reveals that Wn−1(z) is just the Christoffel’s

polynomial encountered in the theory of the Legendre functions of the second kind (in this
connection, cf section 6.1); the reason for introducing the minus sign on the right-hand side
of the definition (5.92) is now clear. We feel obliged to mention that the representation of
Wn−1(z) given in equation (5.117) is the one discovered by Christoffel, that in equation (5.115)
is due to Hermite [31], while the one in equation (5.118) was found by Stieltjes [32, 33].

The following differential[
d

dz
(1 − z2)

d

dz
+ n(n + 1)

]
Wn−1(z) = 2

dPn(z)

dz
(5.120)

recurrence

(n + 1)Wn(z) − (2n + 1)zWn−1(z) + nWn−2(z) = δn0 (5.121)

and differential-difference

(n + 1)
dWn(z)

dz
− (n + 1)z

dWn−1(z)

dz
= (n + 1)2Wn−1(z) − dPn(z)

dz
(5.122)
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nz
dWn−1(z)

dz
− n

dWn−2(z)

dz
= n2Wn−1(z) − dPn(z)

dz
(5.123)

n(n + 1)
dWn(z)

dz
− n(n + 1)

dWn−2(z)

dz
= n(n + 1)(2n + 1)Wn−1(z) − (2n + 1)

dPn(z)

dz

(5.124)

(z2 − 1)
dWn−1(z)

dz
= nzWn−1(z) − nWn−2(z) − Pn(z) + δn0 (5.125)

relations obeyed by the Christoffel polynomials are readily deduced from the definition (5.92),
the properties (5.12) and (5.16)–(5.22) and also, when needed, the relations (3.9)–(3.14) and
(5.45).

A further relationship, of use in section 6.3, obeyed by the Christoffel polynomials is

(1 − z2)

[
Pn(z)

dWn−1(z)

dz
− Wn−1(z)

dPn(z)

dz

]
= [Pn(z)]

2 − 1. (5.126)

To prove it, one multiplies equation (3.8), particularized to the case ν = n, by Wn−1(z),
equation (5.120) by Pn(z), subtracts and integrates with respect to z, obtaining

(1 − z2)

[
Pn(z)

dWn−1(z)

dz
− Wn−1(z)

dPn(z)

dz

]
= [Pn(z)]

2 + C (5.127)

where C is an integration constant remaining to be determined. If one sets z = 1 and uses the
property (3.6), one finds

C = −1, (5.128)

hence, equation (5.126) follows.
As in section 5.3.1, we conclude with the following series expansions involving the

polynomials studied here:

± 1√
h2 − 2hz + 1

ln
z − h ∓ √

h2 − 2hz + 1

z ∓ 1
=

∞∑
n=0

hnWn−1(z)

(|h| < min
∣∣z ±

√
z2 − 1

∣∣) (5.129)

± 1√
h2 − 2hz + 1

ln
hz − 1 ∓ √

h2 − 2hz + 1

h(z ∓ 1)
=

∞∑
n=0

h−n−1Wn−1(z)

(|h| > max
∣∣z ±

√
z2 − 1

∣∣) (5.130)

(the upper or lower sets of signs on the left-hand sides of equations (5.129) and (5.130) may
be chosen at will). These expansions follow from combining the definition (5.92) with the
expansions (5.38) and (5.40).

6. Some applications

6.1. Formulae for the Legendre function of the second kind

As4 the first example of the utility of the results of section 5, we shall present here a non-
standard derivation of two representations of the Legendre function of the second kind with a
non-negative integer degree.

4 Applications of some of the results of section 5 to constructing explicit expressions for generalized Green functions
for the Helmholtz operator on the two-dimensional unit sphere and for the Legendre operator on the interval [−1, 1]
have been presented in [24].
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We begin with recalling that for ν ∈ C\Z and z ∈ C\R the Legendre function of the
second kind, Qν(z), may be defined in terms of the functions Pν(±z) as [1, chapter 3]

Qν(z) = π

2

e∓iπνPν(z) − Pν(−z)

sin(πν)
(6.1)

with the upper (lower) sign being taken for Im(z) > 0 (respectively Im(z) < 0). As it is, the
formula in equation (6.1) is not directly applicable to the case when ν = n ∈ N. However, on
exploiting the complex version of the l’Hôpital rule, we infer that

Qn(z) = 1

2

∂Pν(z)

∂ν

∣∣∣∣
ν=n

− (−1)n

2

∂Pν(−z)

∂ν

∣∣∣∣
ν=n

∓ 1

2
iπPn(z). (6.2)

If in this equation use is made, twice, of the Jolliffe’s formula (5.3), with the aid of the property

Pn(−z) = (−1)nPn(z), (6.3)

one obtains

Qn(z) = 1

2nn!

dn

dzn

[
(z2 − 1)n ln

1 + z

1 − z

]
− 1

2
Pn(z) ln

1 + z

1 − z
∓ 1

2
iπPn(z). (6.4)

Since it holds that

1 − z = (z − 1) e∓iπ (6.5)

equation (6.4) may be simplified, yielding

Qn(z) = 1

2nn!

dn

dzn

[
(z2 − 1)n ln

z + 1

z − 1

]
− 1

2
Pn(z) ln

z + 1

z − 1
(6.6)

(cf [11, section 44]). If, instead of combining equation (6.2) with the Jolliffe’s formula (5.3),
we shall use equation (5.4) and the definition (5.92), again with the aid of the property (6.3)
we find

Qn(z) = 1

2
Pn(z) ln

1 + z

1 − z
− Wn−1(z) ∓ 1

2
iπPn(z) (6.7)

which, after exploiting equation (6.5), becomes

Qn(z) = 1

2
Pn(z) ln

z + 1

z − 1
− Wn−1(z). (6.8)

This is the well-known Christoffel’s formula for Qn(z) [1–5]. Equations (6.6) and (6.8) remain
valid if z is continued to the half-line (1,∞).

On the interval −1 � x � 1, the Legendre function of the second kind may be defined as
[1, chapter 3]

Qν(x) = π

2

Pν(x) cos(πν) − Pν(−x)

sin(πν)
. (6.9)

Proceeding analogously as above, we find

Qn(x) = 1

2

∂Pν(x)

∂ν

∣∣∣∣
ν=n

− (−1)n

2

∂Pν(−x)

∂ν

∣∣∣∣
ν=n

(6.10)

and then

Qn(x) = 1

2nn!

dn

dxn

[
(x2 − 1)n ln

1 + x

1 − x

]
− 1

2
Pn(x) ln

1 + x

1 − x
(6.11)

Qn(x) = 1

2
Pn(x) ln

1 + x

1 − x
− Wn−1(x). (6.12)
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6.2. Summation of some Legendre series and evaluation of some definite integrals involving
Legendre polynomials

Consider the Legendre series

S(±)
n (x) =

∞∑
k=0

(k �=n)

(±1)k
2k + 1

(n − k)(k + n + 1)
Pk(x) (n ∈ N). (6.13)

We begin with the observation that the above equation may be rewritten as

S(±)
n (x) = lim

ν→n

∂

∂ν
(ν − n)

∞∑
k=0

(±1)k
2k + 1

(ν − k)(k + ν + 1)
Pk(x) +

(±1)n

2n + 1
Pn(x). (6.14)

On the other hand, it is known [5, 34, 35] that
∞∑

k=0

(±1)k
2k + 1

(ν − k)(k + ν + 1)
Pk(x) = π

sin(πν)
Pν(∓x) (ν �∈ Z) (6.15)

so that from equations (6.14) and (6.15) we have

S(±)
n (x) = (−1)n

∂Pν(∓x)

∂ν

∣∣∣∣
ν=n

+
(±1)n

2n + 1
Pn(x). (6.16)

Inserting here the results (5.4) and (5.64), after recalling the definition (6.13) and the property
(6.3), one obtains the summation formula

∞∑
k=0

(k �=n)

(±1)k
2k + 1

(n − k)(k + n + 1)
Pk(x) = (±1)nPn(x) ln(1 ∓ x)

+ 2
n−1∑
k=0

(±1)k
2k + 1

(n − k)(k + n + 1)
Pk(x)

+ (±1)n[ψ(2n + 2) + ψ(2n + 1) − 2ψ(n + 1) − ln 2]Pn(x). (6.17)

With no difficulty, it is possible to deduce from equation (6.17) two additional summation
formulae:

∞∑
k=0

(k �=n)

(±1)k
2k + 1

|n − k|(k + n + 1)
Pk(x) = −(±1)nPn(x) ln(1 ∓ x)

+ (±1)n[ln 2 + 2ψ(n + 1) − ψ(2n + 1) − ψ(2n + 2)]Pn(x) (6.18)

and
∞∑

k=0

(±1)k
2k + 2n + 3

(k + 1)(k + 2n + 2)
Pk+n+1(x) = ∓Pn(x) ln(1 ∓ x)

−
n−1∑
k=0

(±1)k+n+1 2k + 1

(n − k)(k + n + 1)
Pk(x)

± [ln 2 + 2ψ(n + 1) − ψ(2n + 1) − ψ(2n + 2)]Pn(x). (6.19)

Further, if equation (6.18) is rewritten in the form

Pn(x) ln(1 ∓ x) = −
∞∑

k=0
(k �=n)

(±1)k+n 2k + 1

|n − k|(k + n + 1)
Pk(x)

+ [ln 2 + 2ψ(n + 1) − ψ(2n + 1) − ψ(2n + 2)]Pn(x) (6.20)
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after multiplying the latter by the Legendre polynomial Pn′(x), integrating the result over the
interval −1 � x � 1 and utilizing the well-known orthogonality relation∫ 1

−1
dx Pn(x)Pn′(x) = 2

2n + 1
δnn′ (6.21)

we arrive at the definite integrals∫ 1

−1
dx Pn(x)Pn′(x) ln(1 ∓ x) = −(±1)n+n′ 2

|n − n′|(n + n′ + 1)
(n �= n′) (6.22)

and∫ 1

−1
dx [Pn(x)]2 ln(1 ∓ x) = 2

2n + 1
[ln 2 + 2ψ(n + 1) − ψ(2n + 1) − ψ(2n + 2)]. (6.23)

6.3. Evaluation of the indefinite integral of the square of the Legendre polynomial

The last example we wish to consider is the evaluation of the indefinite integral of the Legendre
polynomial squared. To achieve the goal, consider the Legendre identities

d

dz
(1 − z2)

dPν(z)

dz
+ ν(ν + 1)Pν(z) = 0 (6.24)

d

dz
(1 − z2)

dPν ′(z)

dz
+ ν ′(ν ′ + 1)Pν ′(z) = 0. (6.25)

Multiplying the former by Pν ′(z), the latter by Pν(z), subtracting and integrating over z yields∫
dz Pν(z)Pν ′(z) = 1 − z2

(ν − ν ′)(ν + ν ′ + 1)

[
Pν(z)

dPν ′(z)

dz
− Pν ′(z)

dPν(z)

dz

]
+ C (6.26)

where C is an arbitrary integration constant (henceforth, it will be tacitly assumed that C
absorbs all additive constants). For ν ′ = ν = n, after utilizing the complex version of the
l’Hospital rule, equation (6.26) becomes∫

dz [Pn(z)]
2 = 1

2n + 1
(1 − z2)

[
∂Pν(z)

∂ν

∣∣∣∣
ν=n

dPn(z)

dz
− Pn(z)

d

dz

∂Pν(z)

∂ν

∣∣∣∣
ν=n

]
+ C. (6.27)

Transforming the right-hand side of this result with the aid of equation (5.4) gives the sought
integral in the form∫

dz [Pn(z)]
2 = 1

2n + 1
(z − 1)[Pn(z)]

2

+
1

2n + 1
(z2 − 1)

[
Pn(z)

dRn(z)

dz
− Rn(z)

dPn(z)

dz

]
+ C. (6.28)

Next, if use is made of the decomposition (5.93) and the identity (5.126), equation (6.28)
becomes∫

dz [Pn(z)]
2 = 1

2n + 1
z[Pn(z)]

2 +
1

2n + 1
(z2 − 1)

[
Pn(z)

dVn(z)

dz
− Vn(z)

dPn(z)

dz

]
+ C.

(6.29)

The right-hand side of the above result may still be simplified if one observes that the derivatives
in the square bracket may be eliminated with the aid of formulae (5.106) and (3.14); this yields∫

dz [Pn(z)]
2 = 1

2n + 1
Pn(z)[zPn(z) − Pn−1(z)]

+
n

2n + 1
[Pn−1(z)Vn(z) − Vn−1(z)Pn(z)] + C. (6.30)
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Then, if one exploits the identity (5.111), equation (6.30) is cast into the form∫
dz [Pn(z)]

2 = 1

2n + 1
z[Pn(z)]

2 +
2

2n + 1

n−1∑
k=1

Pk(z)[zPk(z) − Pk+1(z)] + C. (6.31)

This formula was given, however without a proof, by Whittaker and Watson [30, p 330]. Since
it holds that
n−1∑
k=1

Pk(z)[zPk(z) − Pk+1(z)] =
n−1∑
k=1

k

2k + 1
Pk−1(z)Pk(z) −

n−1∑
k=1

k

2k + 1
Pk(z)Pk+1(z)

= − n − 1

2n − 1
Pn−1(z)Pn(z) +

n−1∑
k=1

1

4k2 − 1
Pk−1(z)Pk(z) (6.32)

(the first equality in the above equation results from manipulating with the summand at the
extreme left with the aid of the relation (3.9)), equation (6.31) may be further transformed
yielding∫

dz [Pn(z)]
2 = 1

2n + 1
z[Pn(z)]

2 − 2(n − 1)

4n2 − 1
Pn−1(z)Pn(z)

+
2

2n + 1

n−1∑
k=1

1

4k2 − 1
Pk−1(z)Pk(z) + C (6.33)

which coincides with the finding of Hargreaves [36] (cf also [11, p 35]).
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[17] MacRobert T M 1967 Spherical Harmonics 3rd edn (Oxford: Pergamon)
[18] Bromwich T J I’A 1913 Certain potential functions and a new solution of Laplace’s equation Proc. Lond. Math.

Soc. 12 100



15172 R Szmytkowski

[19] Patel K A and Harrington W J 1973 Steady-state temperature distribution in a finite spherical cone Z. Angew.
Math. Phys. 24 214

[20] Schelkunoff S A 1941 Theory of antennas of arbitrary size and shape Proc. IRE 29 493
Schelkunoff S A 1984 Proc. IEEE 72 1165 (reprint)

[21] Hoenselaers C 1988 A note on Weyl’s solutions Class. Quantum Grav. 5 1045
[22] Bretón N, Garcı́a A A, Manko V S and Denisova T E 1998 Arbitrarily deformed Kerr–Newman black hole in an

external gravitational field Phys. Rev. D 57 3382 (Notice that the first formula in equation (10) in that paper
was misprinted; it should read π0 = ln[(1+ �c)/2].)

[23] Szmytkowski R 2005 Some summation formulae for spherical spinors J. Phys. A: Math. Gen. 38 8993
[24] Szmytkowski R 2006 Closed form of the generalized Green’s function for the Helmholtz operator on the

two-dimensional unit sphere J. Math. Phys. 47 063506
[25] Jolliffe A E 1919 A form for d

dn
Pn(µ), where Pn(µ) is the Legendre polynomial of degree n Mess. Math. 49

125
[26] Schelkunoff S A 1948 Applied Mathematics for Engineers and Scientists (Toronto: Van Nostrand) (section

21.7)
[27] Robin L 1956 Dérivée de la fonction associée de Legendre de première espèce, par rapport à son degré Compt.
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